Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 1(11): 811-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23197693

RESUMO

Control of the cancer stem/initiating cell population is considered key to realizing the long-term survival of glioblastoma patients. Recently, we demonstrated that FOXO3 activation is sufficient to induce differentiation of glioma-initiating cells having stem-like properties and inhibit their tumor-initiating potential. Here we identified metformin, an antidiabetic agent, as a therapeutic activator of FOXO3. Metformin activated FOXO3 and promoted differentiation of such stem-like glioma-initiating cells into nontumorigenic cells. Furthermore, metformin promoted FOXO3 activation and differentiation via AMP-activated protein kinase (AMPK) activation, which was sensitive to extracellular glucose availability. Importantly, transient, systemic administration of metformin depleted the self-renewing and tumor-initiating cell population within established tumors, inhibited tumor formation by stem-like glioma-initiating cells in the brain, and provided a substantial survival benefit. Our findings demonstrate that targeting glioma-initiating cells via the AMPK-FOXO3 axis is a viable therapeutic strategy against glioblastoma, with metformin being the most clinically relevant drug ever reported for targeting of glioma-initiating cells. Our results also establish a novel, direct link between glucose metabolism and cancer stem/initiating cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Fatores de Transcrição Forkhead/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Metformina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Forkhead Box O3 , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glucose , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante Heterólogo
2.
Stem Cells ; 29(12): 1942-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957016

RESUMO

Overcoming the resistance of glioblastoma cells against temozolomide, the first-line chemotherapeutic agent of choice for newly diagnosed glioblastoma, is a major therapeutic challenge in the management of this deadly brain tumor. The gene encoding O(6) -methylguanine DNA methyltransferase (MGMT), which removes the methyl group attached by temozolomide, is often silenced by promoter methylation in glioblastoma but is nevertheless expressed in a significant fraction of cases and is therefore regarded as one of the most clinically relevant mechanisms of resistance against temozolomide. However, to date, signaling pathways regulating MGMT in MGMT-expressing glioblastoma cells have been poorly delineated. Here in this study, we provide lines of evidence that the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK)-murine double minute 2 (MDM2)-p53 pathway plays a critical role in the regulation of MGMT expression, using stem-like glioblastoma cells directly derived from patient tumor samples and maintained in the absence of serum, which not only possess stem-like properties but are also known to phenocopy the characteristics of the original tumors from which they are derived. We show that, in stem-like glioblastoma cells, MEK inhibition reduced MDM2 expression and that inhibition of either MEK or MDM2 resulted in p53 activation accompanied by p53-dependent downregulation of MGMT expression. MEK inhibition rendered otherwise resistant stem-like glioblastoma cells sensitive to temozolomide, and combination of MEK inhibitor and temozolomide treatments effectively deprived stem-like glioblastoma cells of their tumorigenic potential. Our findings suggest that targeting of the MEK-ERK-MDM2-p53 pathway in combination with temozolomide could be a novel and promising therapeutic strategy in the treatment of glioblastoma.


Assuntos
Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Dacarbazina/análogos & derivados , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Supressoras de Tumor/metabolismo , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Temozolomida , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Stem Cells ; 29(9): 1327-37, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21793107

RESUMO

Glioblastoma is one of the most aggressive types of human cancer, with invariable and fatal recurrence even after multimodal intervention, for which cancer stem-like cells (CSLCs) are now being held responsible. Our recent findings indicated that combinational inhibition of phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) and mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways effectively promotes the commitment of glioblastoma CSLCs to differentiation and thereby suppresses their tumorigenicity. However, the mechanism by which these two signaling pathways are coordinated to regulate differentiation and tumorigenicity remains unknown. Here, we identified FoxO3a, a common phosphorylation target for Akt and ERK, as a key transcription factor that integrates the signals from these pathways. Combinational blockade of both the pathways caused nuclear accumulation and activation of FoxO3a more efficiently than blockade of either alone, and promoted differentiation of glioblastoma CSLCs in a FoxO3a expression-dependent manner. Furthermore, the expression of a constitutively active FoxO3a mutant lacking phosphorylation sites for both Akt and ERK was sufficient to induce differentiation and reduce tumorigenicity of glioblastoma CSLCs. These findings suggest that FoxO3a may play a pivotal role in the control of differentiation and tumorigenicity of glioblastoma CSLCs by the PI3K/Akt/mTOR and MEK/ERK signaling pathways, and also imply that developing methods targeting effective FoxO3a activation could be a potential approach to the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fatores de Transcrição Forkhead/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/fisiologia , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Regulação para Cima
4.
Stem Cells ; 28(11): 1930-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20857497

RESUMO

The molecular signaling pathways orchestrating the biology of cancer stem-like cells (CSLCs), including glioblastoma, remain to be elucidated. We investigated in this study the role of the MEK/extracellular signal-regulated kinase (ERK) pathway in the control of self-renewal and tumorigenicity of glioblastoma CSLCs, particularly in relation to the PI3K/mTOR (mammalian target of rapamycin) pathway. Targeted inactivation of MEK alone using pharmacological inhibitors or siRNAs resulted in reduced sphere formation of both cell line- and patient-derived glioblastoma CSLCs, accompanied by their differentiation into neuronal and glial lineages. Interestingly, this effect of MEK inactivation was apparently augmented in the presence of NVP-BEZ235, a dual inhibitor of PI3K and mTOR. As a potential explanation for this observed synergy, we found that inactivation of either the MEK/ERK or PI3K/mTOR pathway triggered activation of the other, suggesting that there may be mutually inhibitory crosstalk between these two pathways. Significantly, inactivation of either pathway led to the reduced activation of p70S6K, and siRNA-mediated knockdown of p70S6K resulted in the activation of both pathways, which no longer maintained the cross-inhibitory relationship. Finally, combinational blockade of both pathways in glioblastoma CSLCs suppressed their tumorigenicity, whether transplanted subcutaneously or intracranially, more efficiently than blockade of either alone. Our findings suggest that there is p70S6K-mediated, cross-inhibitory regulation between the MEK/ERK and PI3K/mTOR pathways, in which each contribute to the maintenance of the self-renewal and tumorigenic capacity of glioblastoma CSLCs. Thus, combinational disruption of these pathways would be a rational and effective strategy in the treatment of glioblastoma.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Butadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neoplásicas/patologia , Nitrilas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas
5.
Neuro Oncol ; 12(12): 1205-19, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861085

RESUMO

Glioblastoma, the most intractable cerebral tumor, is highly lethal. Recent studies suggest that cancer stem-like cells (CSLCs) have the capacity to repopulate tumors and mediate radio- and chemoresistance, implying that future therapies may need to turn from the elimination of rapidly dividing, but differentiated, tumor cells to specifically targeting the minority of tumor cells that repopulate the tumor. However, the mechanism by which glioblastoma CSLCs maintain their immature stem-like state or, alternatively, become committed to differentiation is poorly understood. Here, we show that the inactivation of mammalian target of rapamycin (mTor) by the mTor inhibitor rapamycin or knockdown of mTor reduced sphere formation and the expression of neural stem cell (NSC)/progenitor markers in CSLCs of the A172 glioblastoma cell line. Interestingly, combination treatment with rapamycin and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, not only reduced the expression of NSC/progenitor markers more efficiently than single-agent treatment, but also increased the expression of ßIII-tubulin, a neuronal differentiation marker. Consistent with these results, a dual PI3K/mTor inhibitor, NVP-BEZ235, elicited a prodifferentiation effect on A172 CSLCs. Moreover, A172 CSLCs, which were induced to undergo differentiation by pretreatment with NVP-BEZ235, exhibited a significant decrease in their tumorigenicity when transplanted either subcutaneously or intracranially. Importantly, similar results were obtained when patient-derived glioblastoma CSLCs were used. These findings suggest that the PI3K/mTor signaling pathway is critical for the maintenance of glioblastoma CSLC properties, and targeting both mTor and PI3K of CSLCs may be an effective therapeutic strategy in glioblastoma.


Assuntos
Glioblastoma/patologia , Imidazóis/farmacologia , Células-Tronco Neoplásicas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Neurosci Lett ; 470(2): 115-20, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20045038

RESUMO

Control of stem cell state and differentiation of neural stem/progenitor cells is essential for proper development of the nervous system. EGF and FGF2 play important roles in the control of neural stem/progenitor cells, but the underlying mechanism still remains unclear. Here we show, using in vitro primary cultures of mouse neural stem/progenitor cells, that both PI3K and mTOR are activated by EGF/FGF2 but that inhibiting the activation of either PI3K or mTOR alone results in only reduced proliferation of neural stem/progenitor cells without affecting their stem cell state, namely, the capacity to self-renew. However, significantly, concurrent inhibition of PI3K and mTOR promoted exit from the stem cell state together with astrocytic differentiation of neural stem/progenitor cells. These findings suggest that PI3K and mTOR are involved in the EGF/FGF2-mediated maintenance of neural stem/progenitor cells and that they may act in parallel and independent pathways, complementing and backing up each other to maintain the stem cell state.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/fisiologia , Animais , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos , Inibidores de Fosfoinositídeo-3 Quinase , Prosencéfalo/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinases TOR , Tubulina (Proteína)/metabolismo
7.
Biochem Biophys Res Commun ; 371(2): 273-7, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18435909

RESUMO

After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked under JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.


Assuntos
MAP Quinase Quinase 4/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/efeitos da radiação , Proteína Oncogênica p21(ras)/análise , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/análise , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Raios Ultravioleta
8.
J Cell Biol ; 170(2): 295-304, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16009721

RESUMO

Life and death decisions are made by integrating a variety of apoptotic and survival signals in mammalian cells. Therefore, there is likely to be a common mechanism that integrates multiple signals adjudicating between the alternatives. In this study, we propose that 14-3-3 represents such an integration point. Several proapoptotic proteins commonly become associated with 14-3-3 upon phosphorylation by survival-mediating kinases such as Akt. We reported previously that cellular stresses induce c-Jun NH2-terminal kinase (JNK)-mediated 14-3-3zeta phosphorylation at Ser184 (Tsuruta, F., J. Sunayama, Y. Mori, S. Hattori, S. Shimizu, Y. Tsujimoto, K. Yoshioka, N. Masuyama, and Y. Gotoh. 2004. EMBO J. 23:1889-1899). Here, we show that phosphorylation of 14-3-3 by JNK releases the proapoptotic proteins Bad and FOXO3a from 14-3-3 and antagonizes the effects of Akt signaling. As a result of dissociation, Bad is dephosphorylated and translocates to the mitochondria, where it associates with Bcl-2/Bcl-x(L). Because Bad and FOXO3a share the 14-3-3-binding motif with other proapoptotic proteins, we propose that this JNK-mediated phosphorylation of 14-3-3 regulates these proapoptotic proteins in concert and makes cells more susceptible to apoptotic signals.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead , Humanos , Mitocôndrias/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína de Morte Celular Associada a bcl , Proteína bcl-X
9.
EMBO J ; 23(8): 1889-99, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15071501

RESUMO

Targeted gene disruption studies have established that the c-Jun NH2-terminal kinase (JNK) is required for the stress-induced release of mitochondrial cytochrome c and apoptosis, and that the Bax subfamily of Bcl-2-related proteins is essential for JNK-dependent apoptosis. However, the mechanism by which JNK regulates Bax has remained unsolved. Here we demonstrate that activated JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3, a cytoplasmic anchor of Bax. Phosphorylation of 14-3-3 led to dissociation of Bax from this protein. Expression of phosphorylation-defective mutants of 14-3-3 blocked JNK-induced Bax translocation to mitochondria, cytochrome c release and apoptosis. Collectively, these results have revealed a key mechanism of Bax regulation in stress-induced apoptosis.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citocromos c/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-jun/metabolismo , Alinhamento de Sequência , Proteína X Associada a bcl-2
10.
Biochem Biophys Res Commun ; 291(4): 1022-30, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11866468

RESUMO

Cell-permeable pancaspase inhibitors such as zAsp-CH2-DCB and zVAD-fmk are widely used to examine the involvement of caspases in cell death models. While examining the caspase-dependence of staurosporine (STS)-induced neuroblastoma cell death, we found that zVAD-fmk but not zAsp-CH2-DCB inhibits apoptosis. Time course analysis revealed that, in contrast to zVAD-fmk which constantly inhibited the processing of endogenous caspase substrates, zAsp-CH2-DCB inhibited substrate processing only for the first few hours after its addition to the culture medium. However, when the caspase activity in lysates prepared from cells treated with STS and zAsp-CH2-DCB was measured in vitro, quite unexpectedly, it was found that zAsp-CH2-DCB completely inhibits the STS-mediated activation of caspases throughout the observation period even when it apparently failed to inhibit the processing of caspase substrates within intact cells. These findings together suggest that there exists a cellular mechanism that inactivates zAsp-CH2-DCB in a reversible manner. This reversible inactivation was an active, intracellular process requiring de novo protein synthesis and was observed in another cell line HeLa and with different apoptotic stimuli such as ultraviolet irradiation. Our results have important implications that require consideration when designing experiments involving the use of caspase inhibitors as well as interpreting their results.


Assuntos
Apoptose , Ácido Aspártico/análogos & derivados , Ácido Aspártico/antagonistas & inibidores , Caspases/análise , Inibidores de Proteases/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase , Caspases/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Precursores Enzimáticos/metabolismo , Células HeLa , Humanos , Cinética , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerases/análise , Projetos de Pesquisa , Estaurosporina/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...